

GOES-R Algorithm Working Group (AWG) Program Status

Jaime Daniels

Program Manager, GOES-R Algorithm Working Group (AWG)

NOAA/NESDIS, Center for Satellite Applications and Research

April 30, 2012

Thanks to: AWG Team Leads and all members of the GOES-R AWG teams

Outline

- AWG Scope of Work
- Status of Deliverables to the GOES-R Program
- Status of AWG Activities
 - Support to Harris/AER's Algorithm Implementation Activities
 - Product Development (Option-2)
 - Product Validation (Baseline)
 - Support for ABI waiver analyses
- Looking Ahead

AWG Scope of Work

- Development of Level-2 product algorithms (Baseline & *Option-2)
- Support to Harris/AER's Algorithm Implementation Activities
- Development of Level-2 product validation tools <u>needed post-launch</u> for:
 - Routine monitoring of L2 product performance (accuracy, precision)
 - "Deep-dive" assessments and analysis of products (problem resolution)
- Continued validation and characterization of product performance
 - Through <u>pre-launch</u> Level-2 product demonstrations and validation studies
 - Using available ABI proxy data and reference/"ground truth" measurements

GOES-R Products

Baseline Products

Advanced Baseline Imager (ABI)

Aerosol Detection (Including Smoke and Dust)

Aerosol Optical Depth (AOD)

Clear Sky Masks

Cloud and Moisture Imagery

Cloud Optical Depth

Cloud Particle Size Distribution

Cloud Top Height

Cloud Top Phase

Cloud Top Pressure

Cloud Top Temperature

Derived Motion Winds

Derived Stability Indices

Downward Shortwave Radiation: Surface

Fire/Hot Spot Characterization

Hurricane Intensity Estimation

Land Surface Temperature (Skin)

Legacy Vertical Moisture Profile

Legacy Vertical Temperature Profile

Radiances

Rainfall Rate/QPE

Reflected Shortwave Radiation: TOA

Sea Surface Temperature (Skin)

Snow Cover

Total Precipitable Water

Volcanic Ash: Detection and Height

Geostationary Lightning Mapper (GLM)

Lightning Detection: Events, Groups & Flashes

Space Environment In-Situ Suite (SEISS

Energetic Heavy Ions

Magnetospheric Electrons & Protons: Low

Energy

Magnetospheric Electrons: Med & High Energy

Magnetospheric Protons: Med & High Energy

Solar and Galactic Protons

Magnetometer (MAG)

Geomagnetic Field

Extreme Ultraviolet and X-ray Irradiance

Solar Flux: EUV

Solar Flux: X-ray Irradiance

Solar Ultraviolet Imager (SUVI)

Solar EUV Imagery

Future Capabilities

Advanced Baseline Imager (ABI)

Absorbed Shortwave Radiation: Surface

Aerosol Particle Size

Aircraft Icing Threat

Cloud Ice Water Path

Cloud Layers/Heights

Cloud Liquid Water

Cloud Type

Convective Initiation

Currents

Currents: Offshore

Downward Longwave Radiation: Surface Enhanced "V"/Overshooting Top Detection

Flood/Standing Water

Ice Cover

Low Cloud and Fog

Ozone Total

Probability of Rainfall

Rainfall Potential

Sea and Lake Ice: Age

Sea and Lake Ice: Concentration

Sea and Lake Ice: Motion

Snow Depth (Over Plains)

SO₂ Detection Surface Albedo

Surface Emissivity

Tropopause Folding Turbulence Prediction

Upward Longwave Radiation: Surface

Upward Longwave Radiation: TOA

Vegetation Fraction: Green

Vegetation Index

Visibility

4

AWG Deliverables & Status

- Algorithm Packages (APs)
 - Algorithm Theoretical Basis Documents (ATBD)
 - Instrument proxy datasets
 - Product output datasets (for reproducibility)
 - Algorithm Interfaces and Ancillary Data Description (AIADD) document

Schedule of Deliveries to the GOES-R Program

September 2008: As-Is ATBDs

September 2009: 80% APs for Baseline Products

✓ November 2010: 100% APs for Baseline Products

80% APs for Option 2 Products

September 2011: 100% APs for Option 2 Products; 80% APs for Visibility, Rainfall Potential &

Rainfall Probability

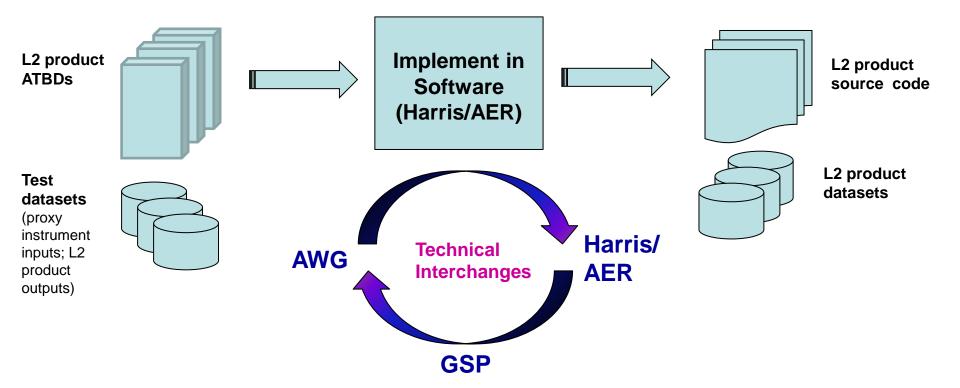
September 2012: 100% APs for Visibility, Rainfall

Potential, and Rainfall Probability;

Routine Validation Tool Documentation

Some ADEB Recommendations

- Serious consideration needs to given to making validation an ongoing activity. In particular, consider separating development activity from validation and commit to pursuing more complete data sets even after 100% delivery. (In reference to baseline & future capability products)
- The board recommends a *special focus be given to the evaluation of future capability algorithms using a fused or integrated approach* to deliver the best science. Integration and / or fusion of these algorithms with respect to multi-observational approaches (e.g. other satellites, ground based radar, surface and airborne in-situ observations, etc.) as well as assimilation into numerical models, could produce far more effective results.
- Recommend teams coordinate with users to revise requirements, where appropriate, for any future capabilities development.
- Wherever feasible, implement these algorithm improvements in current operations.
 This will allow for more rigorous operational testing and evaluation, as well as early realization of benefits from the GOES-R Program.


STATUS OF AWG ACTIVITIES

- Support to Harris/AER's Algorithm Implementation Activities
- Product Algorithm Development (Option-2)
- Product Validation (Baseline)
- Support for ABI waiver analyses

From ATBDs to Level-2 Product Software

- AWG is currently working closely with Harris/AER and the GOES-R Ground Segment Project (GSP) to support the implementation of GOES-R Level-2 product algorithms into the ground segment
- Process is <u>critical</u> for proper implementation of the L2 product algorithms
- Process is key for Harris to meet the reproducibility requirement (GSFPS-2758)

Getting to Reproducibility

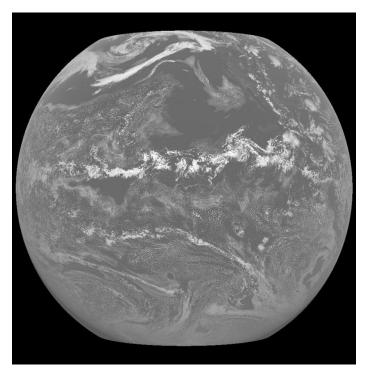
Assuring Correct L2 Algorithm Implementation...

- AER Activities

- Review of GFE GS-11 algorithm packages (ATBDs and test data sets)
- Review AWG source code
- Develop Algorithm Description Documents (ADD)
- Develop algorithm software
- Perform reproducibility testing (documented in technical notes)

Interactions between AWG Teams and Harris/AER

- Technical Interchange Meetings (TIMs)
- Document exchanges. (Questions, Answers, Clarifications, Resolutions)
- AWG prepares and delivers updated test datasets and source code, as necessary
- Weekly meetings to discuss issues and track progress (GSP, AWG, Harris, AER)
- Bring full understanding of AWG developed algorithms to Harris/AER


- Commitment of all to the process

- Fruits of these efforts are beginning to show up
 - In AER's reproducibility statistics for L2 products that have gone through their SWIT process

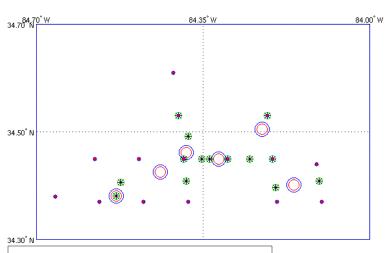
NASA NASA

Imagery

Full Disk Output – 11 µm Brightness Temperature

- AWG provided responses to 26 questions asked by Harris/AER Team.
- Reproducibility Tests were performed on 53 test cases combining Full-disk, Conus and Mesoscale images.

All output are exceeding reproducibility requirements!


	Number	Requirements Verification			
	of	Refl.	Br.	Refl.	
Scene	Unique	Factor	Temp.	Factor	DQF
Туре	Cases	Native	Native	Aggr.	Aggr.
FD	16	6	10	0	0
CONUS	19	6	9	0	0
MESO	10	•		SS: 3	SS: 3
IVIESU	18	6	9	AV: 3	AV: 3
Total	53	18	28	6	6

Lightning Cluster Filter Algorithm

'proxy-2006-07-29_large' dataset

- Blue open circle = AWG Flash
- Red open circle = AER Flash
- Green open circle = AWG Group
- Black star = AER Group
- Blue dot = AWG Event
- Red dot = AER Event

Group and Flash Grouping Summary

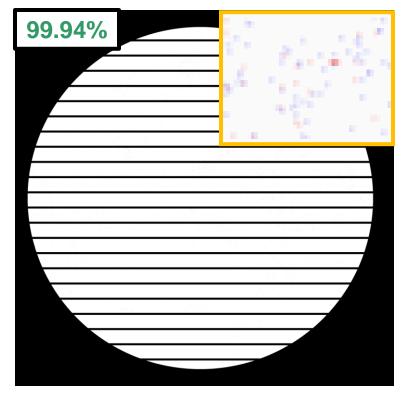
Data Name	Number of Valid AWG Test Cases	Results Minimum Percentage
Groups	112	100.0
Flashes	112	99.705593

- AWG provided responses to 28 questions asked by AER/ Harris Team.
- Reproducibility Tests were performed on 112 test cases.
- An unlikely scenario was tested with 16745 Events, 3112 Groups and 815 Flashes over a 63 second time period.

Group Properties Processing Summary

Data Name	Number of Valid AWG Test Cases	Results Minimum R-Squared	
Group Latitude	110	0.99999999386	
Group Longitude	110	0.99999998492	
Group Footprint	110	0.99999999996	
Group Energy	112	0.99999986666	

Flash Properties Processing Summary


Summary				
Data Name	Number of Valid AWG Test Cases	Results Minimum R-Squared		
Flash Time	109	1.000000000000		
Flash Latitude	110	0.99999999940		
Flash Longitude	110	0.99999997887		
Flash Footprint	110	1.000000000000		
Flash Energy	111	0.99999999992		

All output is exceeds the >0.9995 R-squared reproducibility requirement!

NASA

Cloud Mask

SEVIRI_2007056_1700 - AER/AWG Cloud Mask Differences

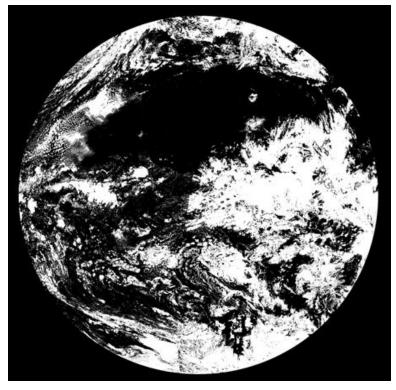
Output	Accy
Binary Cloud Mask	99.92%
Data Quality Flag	100%
4-Level Cloud Mask	99.72%

- AWG provided responses to 121 questions asked by Harris/AER Team.
- Reproducibility Tests were performed on 36 full-disk SEVIRI scenes with a total of <u>7.8 million pixels compared</u>.
- Comparison of all the cloud mask tests were also examined to ensure that the tests were completed accurately.

Binary Cloud Detection Test Results

DIF Bit	Accy
RTCT	100.00%
ETROP	99.99%
PFMFT	99.99%
NFMFT	100.00%

Uniformity & Restoral Test Results


DIF Bit	Accy
RUT	99.99%
TUT	99.85%
CSRT	99.99%
PCRT	99.75%

All output is > 99% classification accuracy reproducibility requirement!

Cloud Top Temperature, Pressure and Height


- AWG provided responses to 52 questions asked by Harris/AER Team.
- Reproducibility Tests were performed on 36 full-disk SEVIRI scenes with a total of <u>13.8 million pixels compared</u>.
- The data quality flags met the >99% classification accuracy with a range of 99.996% 99.999%.

SEVIRI_2007057_0700_00 - Cloud Top Temperature

Product	R-Squared min	R-Squared max	Outlier %min	Outlier %max
Temperature	0.99998447	0.99999992	0.0026%	0.0053%
Pressure	0.99999452	0.99999986	0.0029%	0.0109%
Height	0.99998988	0.9999993	0.0033%	0.0057%

All output is > 0.9995 reproducibility requirement, and < 1% outlier requirement!

STATUS OF AWG ACTIVITIES

- Support to Harris/AER's Algorithm Implementation Activities
- Product Algorithm Development (Option-2)
- Product Validation (Baseline)
- Support for ABI waiver analyses

Completing Development of

Option-2 Product Algorithms...

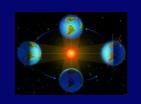
- Hydrology and Aviation Teams have developed, tested, and delivered Versions 4 of their remaining Option-2 product algorithm software to the AIT for integration into framework
 - Rainfall potential, rainfall probability, visibility
- Preparing for their Code Unit Test Reviews
- Preparing for their Algorithm Readiness Reviews
- Working to complete their 100% Algorithm Theoretical Basis Documents (ATBD)
- Delivery to GOES-R Program (Sept 30, 2012)

STATUS OF AWG ACTIVITIES

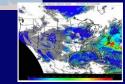
- Support to Harris/AER's Algorithm Implementation Activities
- Product Algorithm Development (Option-2)
- Product Validation (Baseline)
- Support for ABI waiver analyses

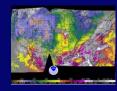
Product Validation Activities *Baseline Products...*

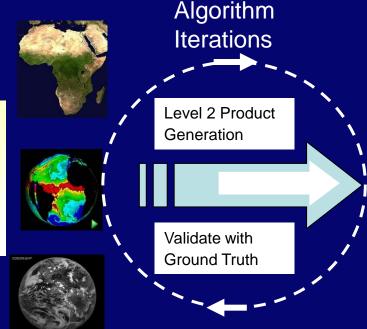
- Teams continue to develop and refine their routine and "deep-dive" validation tools; documenting their routine validation tools
- Teams continue to further enhance their validation datasets to achieve "more complete validation" of baseline products
- Some teams have established routine near real-time product processing, when possible, using available proxy data
 - Identification of case study situations where algorithms perform well or struggle
 - Algorithm enhancements (beyond the 100% delivered algorithm)


More details of these activities will be in AWG oral and/or poster presentations

Assessing and Characterizing Algorithm Performance







Seasonal conditions represented

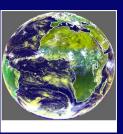
Wide variety of atmospheric and surface conditions are represented

As algorithms mature...

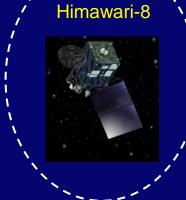
- ✓ Better estimates of product performance
- ✓ Increased confidence that on-orbit product performance will meet specs
- ✓ Increased confidence that user needs are met

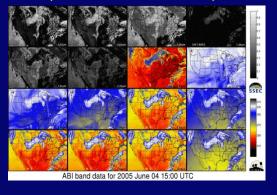
AWG continues to assess and characterize the performance of the baseline algorithms during this pre-launch phase of the GOES-R Program.

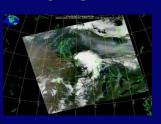
GOES-R Proxy Data Sources



"Simulated" Proxy Data Sources

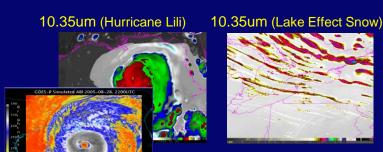

Current GOES


Meteosat/ **SEVIRI**


Future

(FD, CONUS, Meso)

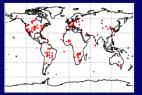
MODIS


TRMM/LIS

3.9um (for fires)

Case Studies

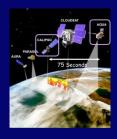
1.2 um (HurricaneKatrina)

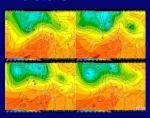

The AWG teams continue to use available proxy data for their algorithm refinement, case study analyses, and product validation efforts...

Reference/"Ground Truth" Data Sources

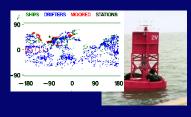
Aeronet Stations Aerosol Optical Depth

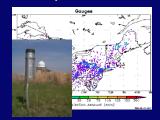
Radiosondes


Winds, Temperature, Moisture, Stability

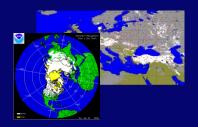

Ground-based Ozone Ozone

CALIPSO, CLOUDSAT Clouds, Icing


NWP Analyses
Winds, Temperature,
Moisture


Pilot Reports Icing, Turbulence

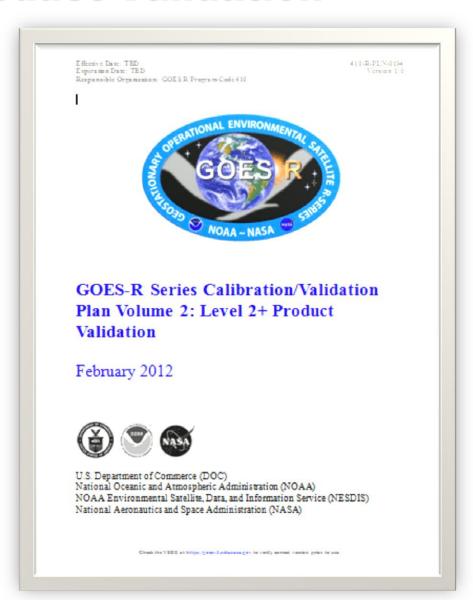
Bouys, Ships SST


Rain Guages Precipitation

SURFRAD, ARM LST, Radiation

Sfc Snow Reports, NESDIS IMS Snow

National Lightning Detection Network (NLDN) Lightning



AWG Teams use a wide variety of Reference/"Ground Truth" datasets to assess and estimate Level-2 product algorithm performance.

GOES-R Series Cal/Val Plan Volume 2: Level-2 Product Validation

- Successfully drafted
- Companion document to the GOES-R Series Cal/Val Plan Volume 1: Level 1b Data document
- Describes the post-launch Level-2 product validation processes and activities for each baseline product
- Been through GOES-R Program internal review process; to be put placed under CM control

Product Algorithms

- Atmospheric Motion Vectors Derived via a New Nested Tracking Algorithm
 Developed for the GOES-R Advanced Baseline Imager (ABI) Daniels, Bresky,
 Wanzong, Bailey, Velden
- Imagery from the Advanced Baseline Imager (ABI) on GOES-R series Schmit, Bah,
 Gunshor, Rink, Otkin, Feltz, Schreiner
- Improving GOES-R Precipitation Products Associated with Deep Convective Systems by using NEXRAD Radar Network over the Continental U.S. - Dong, Li, Kuligowski
- Future enhancements to GOES-R retrievals of nighttime cloud optical and microphysical properties - Heck, Minnis, Hong, Chang, Bedka, Yost, Ayers
- Daytime Cloud Optical and Microphysical Parameters (DCOMP) for GOES-ABI and VIIRS – Walther, Heidinger
- The Snow Cover product for GOES-R Advanced Baseline Imager Rost, Eicher,
 Painter

Product Algorithms (cont'd)

- SST from GOES-R and JPSS: Algorithms, Products, Cal/Val and Monitoring -Ignatov, Petrenko, Dah, Liang, Stroup
- The GOES-R Tropopause Folding Turbulence Product: Finding clear-air turbulence in GOES water vapor imagery – Wimmers, Feltz
- The GOES Objective Overshooting Top and Enhanced-V Signature Detection Products: Algorithm Description, Validation, and Application - Bedka, Brunner, Dworak, Feltz, Fleeger
- GOES-R Ocean Dynamics Algorithm Maturi
- Sea and Lake Ice Thickness and Age with GOES-R ABI and NPP/JPSS VIIRS -Wang, Key, Liu
- Ice Cover and Concentration with GOES-R ABI and NPP/JPSS VIIRS Liu, Key,
 Wang
- The GOES-R Probability of Rainfall Algorithm Kuligowski, Barnhill, Zhang
- The GOES-R Rainfall Potential Algorithm Kuligowski, Zhang
- GOES-R ABI Snow Depth Algorithm and Product: Development and Performance Assessment – Romanov

<u>Validation</u> - Product Performance, Tools

- Intercomparison of Lightning Location Systems during CHUVA-GLM field campaign and thunderstorm characteristics - Albrecht, Morales, Goodman, Blakeslee, Bailey, Carey, Mach, Hall, Bateman, Rudlosky, Holler, Betz, Mattos, Nag, Said, Lojou, Heckman, Pinto Jr., Naccarato, Saraiva, Saba, Holzworth, Anderson, Collins
- GOES-R AWG GLM Val Tool Development Bateman, Mach, Goodman, Blakeslee, Koshak
- Atmospheric Motion Vectors Derived via a New Nested Tracking Algorithm
 Developed for the GOES-R Advanced Baseline Imager (ABI) Daniels, Bresky,
 Wanzong, Bailey, Velden
- SST from GOES-R and JPSS: Algorithms, Products, Cal/Val and Monitoring -Ignatov, Petrenko, Dah, Liang, Stroup
- Land Surface Temperature Production and Validation Tool development for GOES-R Mission - Yu, Wang, Tarpley, Hale

- <u>Validation</u> Product Performance, Tools (Cont'd)
 - GOES-R ABI Aerosol Product Validation and Tools An Update Zhou, Ciren, Laszlo, Liu, Kondragunta
 - An integrated validation system for GOES-R products leveraging collocated JPSS and A-Train Observations - Holz, Quinn, Nagle, Kuehn
 - GOES-R ABI Deep-Dive Active Fire Product Validation Schroeder, Schmidt, Hoffman, Csiszar
 - GOES-R ABI Snow Depth Algorithm and Product: Development and Performance Assessment – Romanov
 - Validation and maintenance of ABI Shortwave Radiation Budget Algorithm Liu,
 Laszlo, Kim
 - Results and tools developed for evaluation and monitoring of GOES-R/ABI absorbed shortwave radiation at surface product Kim, Laszlo, Liu
 - The GOES Objective Overshooting Top and Enhanced-V Signature Detection Products: Algorithm Description, Validation, and Application - Bedka, Brunner, Dworak, Feltz, Fleeger
 - Validation of GOES-R ABI Flood and Standing Water Algorithm Zhang, Sun, Yu

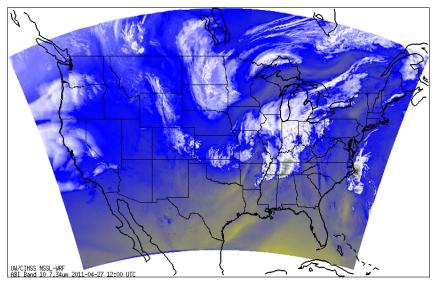
AWG Proxy Team Activities

Radiative Transfer Modeling (RTM)

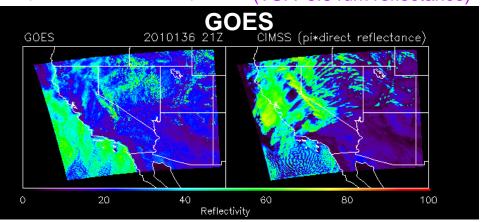
- Working to improve CRTM performance for IR radiance simulation for GOES-R applications (recent focus on LAP T/Q products)
- JCSDA has created a alpha upgrade to the CRTM that runs 15 times
 faster than the version used during AWG algorithm development
- Version has been tested by the AWG and the sounding products have been reproduced with significant reductions in run time

Generation of GOES-R Proxy Data

- GLM (Steve Goodman will talk more about this Tuesday; posters)
 - AWG team at National Space Science & Technology Center, Huntsville, Al
- ABI (Tim Schmit will talk more about this Tuesday; posters)
 - AWG team members at CIMSS & CIRA


Simulated ABI Data

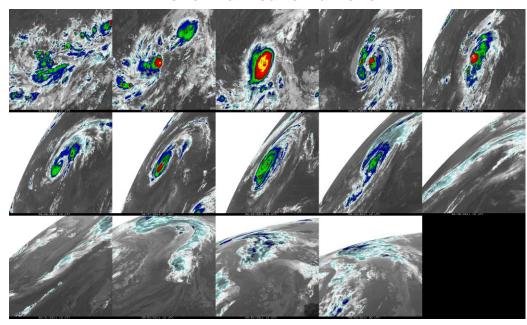
From the AWP Proxy Team at CIMSS...


- Continue to generate near-real-time data (ABI bands 2, 8-16) for Proving Ground & AWG using the 4-km NSSL WRF model output
- Produced a special simulated ABI dataset using NSSL WRF data to test atmospheric motion vector algorithms (See Poster #10, Thurs.)
- Plans are to use WCRTM, which we developed to interface WRF data with the CRTM, in future production of these data (See Poster #10, Thurs.)
- WRF-CHEM Aerosol and Ozone proxy data activities focused on evaluation of uncertainties in the simulated ABI 0.64um data using the CRTM
 - CRTM uncertainties focused on representation of land surface emissivity/reflectivity

Simulated 7.34 um band

Observed (0.64um reflectance)

Simulated (TOA 0.64um reflectance)

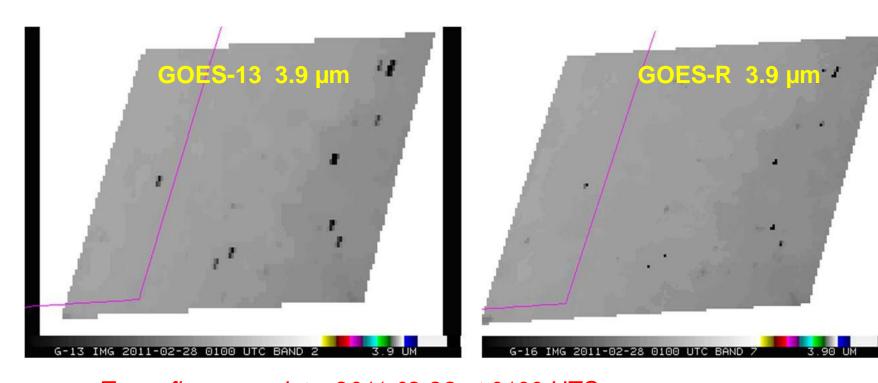

Proxy ABI DataFrom the AWP Proxy Team at CIRA...

 Simulated GOES-R tropical cyclone proxy datasets were produced for five 2010 tropical cyclones

- using MSG channels 4-11
- Simulating ABI channels 7-16
- Temporal resolution: 15 minutes
- Datasets and documentation delivered to AWG proxy team

SEVIRI channel 9 imagery (10.8 μm) collected over Hurricane Danielle

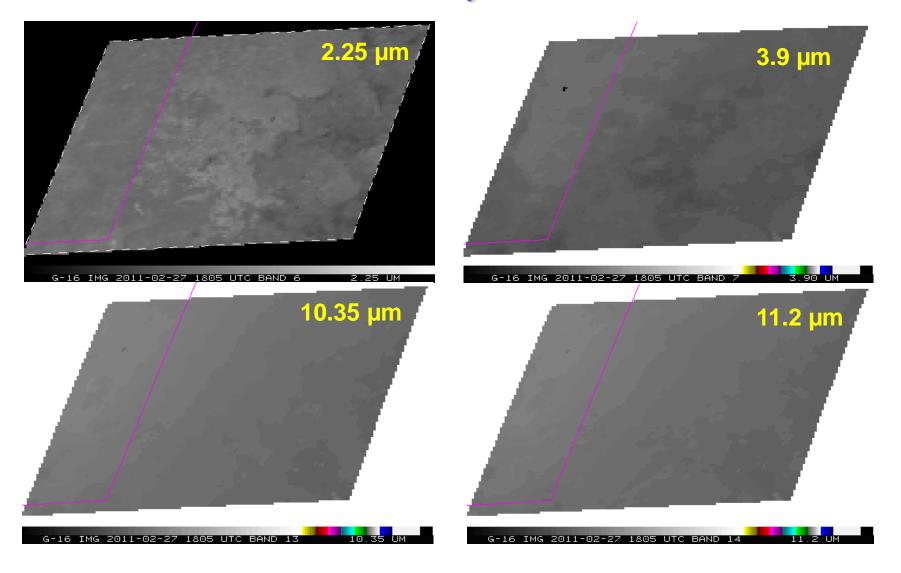
Tropical Cyclones	Number of MSG/SABI Images	
Danielle (August 2010)	1143	
Igor (September 2010)	1395	
Julia (September 2010)	1163	
Lisa (September 2010)	823	
Otto (October 2010)	1049	



ABI Proxy Data (Fires)From the AWP Proxy Team at CIRA...

<u>Production of GOES-R ABI fire proxy datasets</u>:

- Fast moving Texas Panhandle wildfire (February 2011)
- Fire proxy datasets cover 12 hour time periods (starting at 27 Feb 18 UTC)
- Brightness temperatures for ABI bands: 2.25, 3.9, 10.35, and 11.2 μm
- Resolution: ABI foot print / every 5 minutes (total of 144 frames per band).



Texas fire proxy data 2011-02-28 at 0100 UTC Comparison of GOES-13 3.9 µm (left) and GOES-R ABI 3.9 µm (right).

ABI Proxy Data (Fires) From the AWP Proxy Team at CIRA...

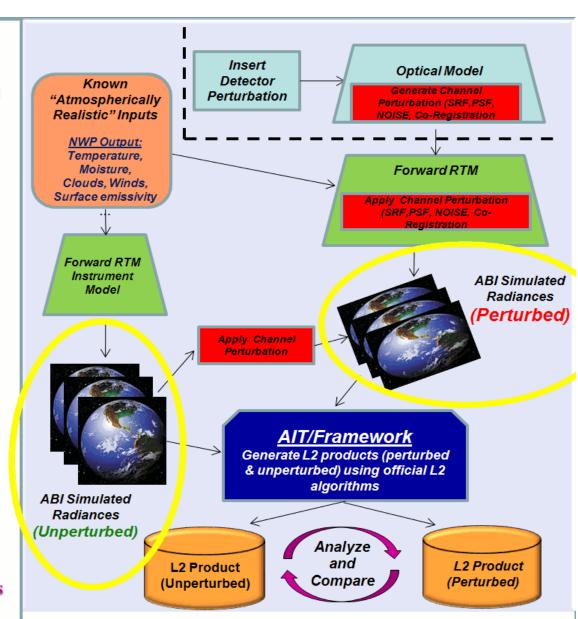
Fast moving Texas fire case: 2011-02-27 at 2115 UTC (mid afternoon local time):

AWG Algorithm Integration Team Progress

- Preparing for Code Unit Test (CUT) reviews of remaining Option-2 product algorithms
- Preparing for integration of remaining Option-2 product algorithm latest software updates into framework
- Algorithm bug fixes in Framework resulting in the need to update and re-deliver some of the baseline product test datasets
- Correct problems/bugs with product software and/or test datasets uncovered as a result of interchanges with Harris/AER
- Re-generation and redelivery of baseline product test data sets, as needed
- Continue to coordinate all AWG team responses to AER questions with GSP and Harris/AER (> 1000 questions answered)
- Preparing for generation of baseline products over extended time periods.

STATUS OF AWG ACTIVITIES

- Support to Harris/AER's Algorithm Implementation Activities
- Product Algorithm Development (Option-2)
- Product Validation (Baseline)
- Support for ABI waiver analyses


AWG Capabilities in Support of an End-to-End Instrument Waiver Analysis Process

GOES-R Analysis Facility for Instrument Impacts on Requirements (GRAFIIR)

- Collection of capabilities/tools that support the GOES-R Program's "Photons to Products Modeling Capabilities"
 - NWP modeling
 - Radiative Transfer Model
 - Instrument perturbation tools
 - AWG L2 product algorithms
 - GLANCE Tool: Statistical comparison tool to analyze and quantify impact of perturbations

GLANCE Tool

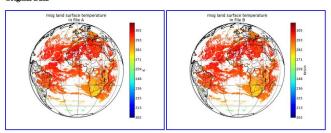
Example output...

msg land surface temperature Variable Comparison

report produced with glance, version 0.2.6.25 comparison generated Thu Mar 31 18:28:07 2011 by user graemem on craackly.ssec.wisc.edu

file A

path: /data/graemem/sounding_verification_20110331/data/geocatL2.Meteosat-8.2006230.000000_033011.hdf mdSsum for file A: 1Re6/73343318b2d5533935c6b1249b4 last modified: TiM Mar 311341:53 2011


file B:

path: /data/graemem/sounding_verification_20110331/data/MSG8_SEVIRI_2006230_0000_00_AWG_SOUNDINGS_032411.nc mdSsum for file B: 47bb489e2008eb5510eb57c0bbf80f7c last modified: TIM Mar 31 1344:39 2011

A configuration file was used to control the production report. Please see this copy of the configuration file for details.

latitude in A: imager_prof_retr_msg_Lat_reduced latitude in B: Latitude longitude in A: imager_prof_retr_msg_Lon_reduced longitude in B: Longitude longitude/latitude comparison epsilon: 0.0001

Original Data

Comparison Information

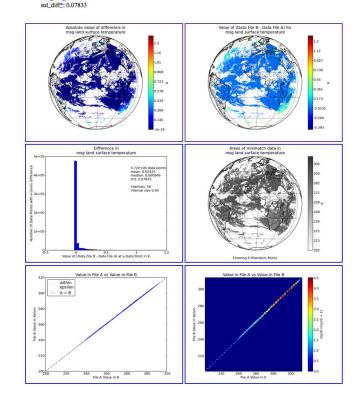
variable name in A: imager_prof_retr_msg_Lst variable name in B: LST epsilon value: None "missing" data value in A: -999.0 "missing" data value in B: -999.0 units in A: K units in B: Kelvin

Statistical Summary

Finite Data Statistics
a_finite_count*: 572249
a_finite_fraction*: 0.3734
b_finite_count*: 572249
b_finite_fraction*: 0.3734
common_finite_count*: 572249
common_finite_count*: 572249
common_finite_fraction*: 0.3734
finite_in_only_one_count*: 0
finite_in_only_one_fraction*: 0

General Statistics

eral Statistics
a_missing_value*: -999
b_missing_value*: -999
epsilon*: None
epsilon percent*: None
max_a*: 313.8
max_b*: 314
min_a*: 201.8
min_b*: 201.8
num_data_points*: 1532644
shape*: (1238, 1238)
spatially_invalid_pts_ignored_in_a*: 390328
spatially_invalid_pts_ignored_in_b*: 390328
spatially_invalid_pts_ignored_in_b*: 390328


Missing Value Statistics
a_missing_count*: 570067
a_missing_fraction*: 0.372
b_missing_count*: 570067
b_missing_fraction*: 0.372
common_missing_count*: 570067
common_missing_fraction*: 0.372

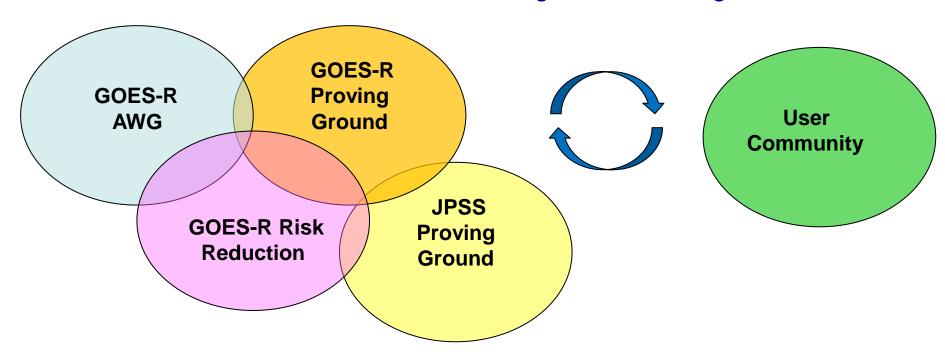
NaN Statistics

a_nan_count*: 0
a_nan_fraction*: 0
b_nan_count*: 0
b_nan_fraction*: 0
common_nan_count*: 0
common_nan_fraction*: 0

Numerical Comparison Statistics

correlation:: 0.9999
diff_outside_epsilon_count:: 0
diff_outside_epsilon_fraction:: 0
max_diff:: 1.417
mean_diff:: 0.002425
median_diff:: 0.00245
median_diff:: 0.00245
mismatch_points_count:: 0
mismatch_points_count:: 0
mismatch_points_count:: 5784
perfect_match_count:: 5784
perfect_match_fraction:: 0.01011
r-squared correlation:: 0.9998
ms_diff:: 0.08197

- Near-term AWG deliverables
 - 100% Option-2 L2 Algorithm Packages for Visibility, Rainfall Potential, and Rainfall Probability (9/30/2012)
 - Routine L2 product routine validation tool documentation (9/30/2012)
- Continue to support the baseline Level-2 product algorithm implementation activity being done by the Harris/AER team
- Continue to support the GOES-R Program for end-toend GOES-R ABI waiver analyses


- Continue Level-2 Product Validation Activities
 - Continue validation tool development & documentation
 - Continue pursuit of more complete validation datasets
 - Generate/Demonstrate products from available proxy/simulated data
 - Exercise the AWG product processing framework
 - Routine near real-time processing (outlier studies and analysis)
 - Manual processing (case studies)
 - Validate and improve error characterization of products
 - Working on the development of new GOES-R AWG web page to improve the visibility of AWG validation activity outcomes & capabilities
- Continue Baseline Level-2 Product Algorithm Enhancements (beyond 100% algorithm delivery)
 - Outcome of continuing product validation activities
 - Demonstrate and document algorithm enhancements
 - Carefully manage and document algorithm deltas

Future Capabilities Product Algorithms

- Presents an opportunity to further improve a number of the algorithms and/or their application to meet existing and evolving user needs.
- Coordinated activities between the GOES-R Program Office, AWG, GOES-R3, GOES-R Proving Ground, JCSDA, JPSS, and users will be critical for meeting these evolving needs

Supporting User Readiness is a responsibility of all!

- STAR and OSPO in this for the long haul
 - Will be the recipients of the entire GOES-R System
 - STAR/AWG will provide science support immediately after launch and on a continuous basis during the years after launch
 - Support anomaly resolution
 - Perform L2 product algorithm updates
 - Development of new algorithms and application and support the transition of these into operational environment
 - OSPO will maintain system and provide user services on a continuous basis during the years after launch

BACKUPS

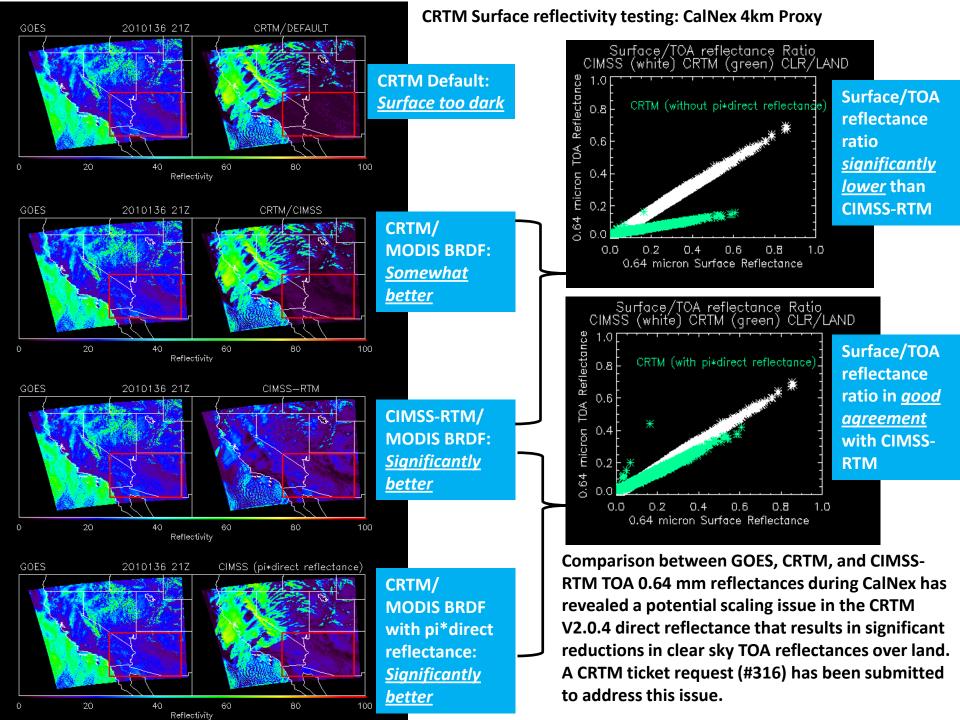
AWG Teams

AWG Product Application Teams	Team Lead
Imagery	Tim Schmit
Soundings	Tim Schmit
Winds	Jaime Daniels
Clouds	Andrew Heidinger
Aviation	Ken Pryor, Wayne Feltz
Hydrology	Robert Kuligowski
Land	Bob Yu
Cryosphere	Jeff Key
Radiation Budget	Istvan Lazslo
Lightning	Steve Goodman
SST	Alexander Ignatov
Ocean Dynamics	Eileen Maturi
Aerosols/Air Quality/Atmos. Chemistry	Shobha Kondragunta
AWG Specialty Teams	Team Lead
Proxy Data	Fuzhong Weng
Cal/Val (Sensor)	Changyong Cao
Algorithm Integration	Walter Wolf

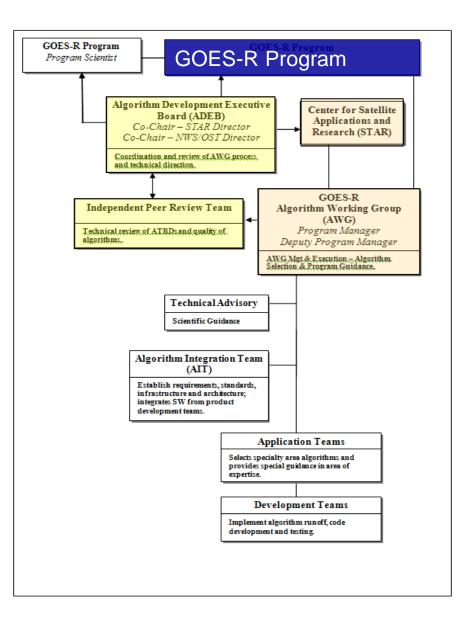
AWG Cal/Val Tool Development

Two Categories of Validation Tools...

- "Routine" Calibration/Validation Tools
- "Deep-dive" Calibration/Validation Tools


"Routine" Validation Tools	"Deep Dive" Validation Tools
Bulk/overview analysis	Detailed/point analysis
Executed soon after product generation	Not executed in real-time. May need to wait for other datasets
Run routinely	Run when more detailed analysis of product performance is needed
Run within OSPO and STAR	Run within STAR
Automated	Automated and/or Interactive components

Simulated ABI Data at CIMSS



- FY2011 WRF-CHEM Aerosol and Ozone proxy data activities focused on evaluation of uncertainties in the simulated ABI data
 - High-resolution (4km) WRF-CHEM simulation over Southern California and coastal waters during May/June 2010. Synthetic radiances were generated using Version 2.0.4 of the CRTM.
 - Land surface properties included16-day MODIS BRDF/Albedos and CIMSS high spectral resolution emissivities (based on UW Baseline Fit Emissivity Database)
 - CRTM uncertainties focused on representation of land surface emissivity/reflectivity through comparisons with calibrated GOES observations, CIMSS radiative transfer modeling, and Surface Radiation Budget (SURFRAD) estimates of surface reflectivity.

Algorithm Development Executive Board (ADEB)

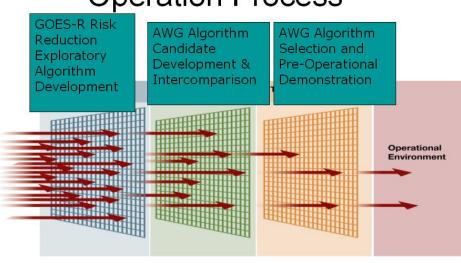
Primary Objectives

- Provide an <u>independent</u> assessment of processes followed by the AWG in the course of their algorithm development activities
- Provide a thorough, <u>independent</u> technical assessment of the GOES-R AWG Level-2 algorithms
- Report findings back to the GOES-R
 Program

ADEB Membership

- Representatives from stakeholder organizations (NWS, DoD, University, private industry)
- Supported by a team of Independent Peer Reviewers (IPR)
 - Subject matter experts not involved with or funded by GOES-R

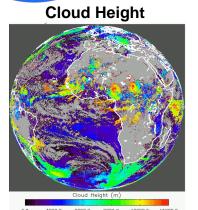
GOES-R Algorithm Working Group

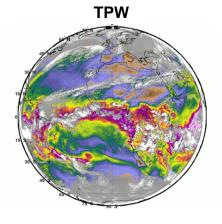

Mission:

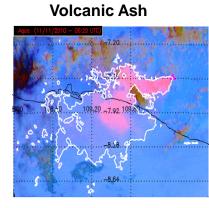
- > To select, develop, test, validate, and demonstrate Level-2+ algorithms that meet the GOES-R F&PS requirements and provide them to the GOES-R Ground Segment.
- Provide sustained life cycle validation and Level-2 product enhancements

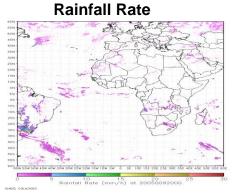
End-to-End Capabilities

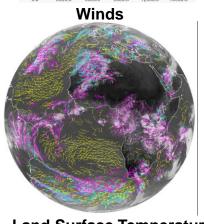
- **Instrument Trade Studies**
- **Proxy Dataset Development**
- **Algorithm Development and Testing**
- **Product Demonstration Systems**
- **Development of Cal/Val Tools**
- **L2 Product Validation** (pre-launch)
- **User Readiness and Education**
- Algorithm and application improvements
- **Integrated Cal/Val Enterprise System**
- Sustained Radiance & L2 Product Validation (post-launch)

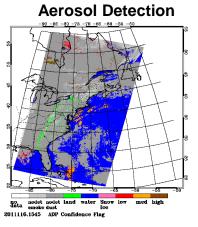

Algorithm Research to **Operation Process**

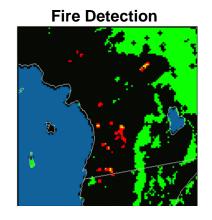


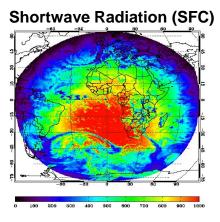


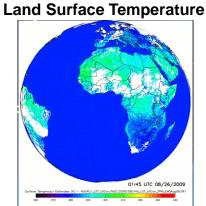

"Baseline" Product Examples

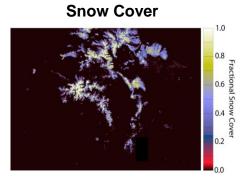


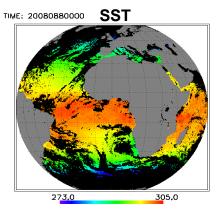


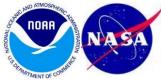


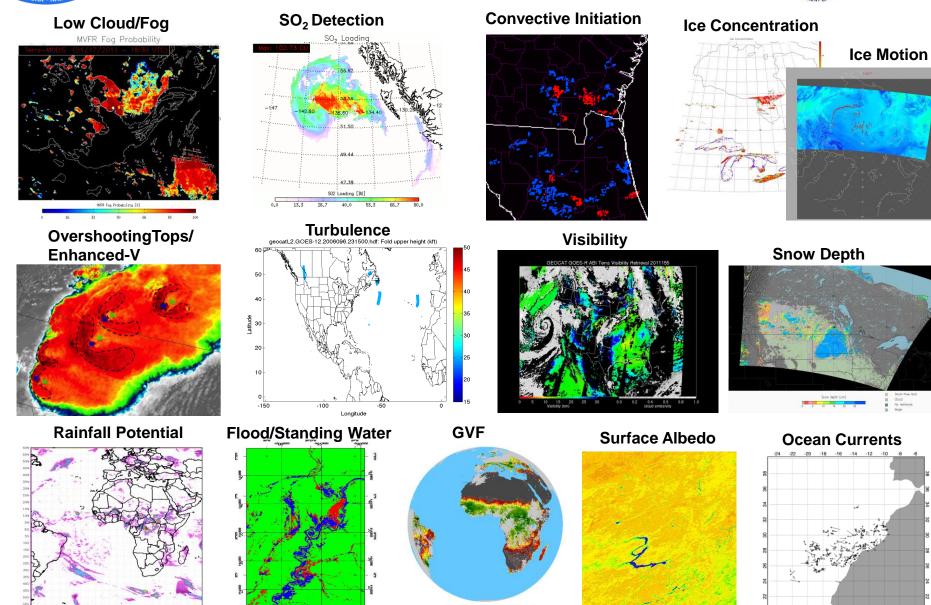












5 10 15 20 25 30 fall Forecast (mm) beginning 1500 UTC 8 July 2005

"Future Capabilities" Product Examples

